Article 5420

Title of the article

PROCESSING TIME SERIES OF MEASUREMENTS
BASED ON THE WAVELET SPECTRA INTELLECTUAL ANALYSIS IN SURVEY SYSTEMS FOR ROAD PAVEMENT DEFECTS DETECTION 

Authors

Golovnin Oleg Konstantinovich, Candidate of engineering sciences, associate professor, sub-department of information systems and technologies, Samara National Research University (34 Moskovskoe shosse street, Samara, Russia), golovnin@bk.ru
Prokhorov Sergey Antonovich, Doctor of engineering sciences, professor, head of the sub-department of information systems and technologies, Samara National Research University (34 Moskovskoe shosse street, Samara, Russia),sp.prokhorov@gmail.com
Stolbova Anastasiya Aleksandrovna, Candidate of engineering sciences, associate professor, sub-department of information systems and technologies, Samara National Research University (34 Moskovskoe shosse street, Samara, Russia), anastasiya.stolbova@bk.ru

Index UDK

004.89

DOI

10.21685/2072-3059-2020-4-5 

Abstract

Background. The growth of mobile technologies led to the ability to survey the condition of road pavement on streets and highways using data received from sensors of mobile devices, which are not always reliable information sources. Thus, this work is focused on the improvement of road pavement defect detection in case of missing fragments in the initial data.
Materials and methods. The research proposes an approach to pavement defects detection based on the analysis of data collected by mobile devices. Due to the complexity of processing and transmission of video recordings from a mobile device's camera, the proposed approach uses data from an accelerometer and a GPS/GLONASS receiver. The unreliability of the accelerometers and possible failures in the transmission of measurement results over the cellular network lead to missing fragments in the initial data, that is why the proposed approach is based on the sequential implementation of Wavelet transform and intelligent neural network analysis, which together provides an increase in the probability of pavement defects detection.
Results. Based on the proposed approach, a system for survey the state of the road pavement was developed. Experimental testing of the system was carried out on two sections of the road network. Test sections are different in the quality of the pavement and speed modes.
Conclusions. The results of the study showed that the probability of road pavement detection was 0.95, thus, high rates were achieved relative to similar solutions. 

Key words

nonequidistance, accelerometer, sensor, neural network, mobile device.

Download PDF
References

1. Golovnin O. K. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk [Proceedings of Samara Scientific Center of the Russian Academy of Sciences]. 2018, vol. 20, no. 6-2, pp. 301–310. [In Russian]
2. Urano K., Hiroi K., Kato S., Komagata N., Kawaguchi N. IEEE International Conference on Pervasive Computing and Communications Work-shops (PerCom Workshops). IEEE, 2019, pp. 826–831.
3. Bello-Salau H., Aibinu A. M., Onwuka E. N., Dukiya J. J., Onumanyi A. J., Ighabon A. O. Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2016, vol. 8, no. 9, pp. 97–101.
4. Struţu M. I., Popescu D. U.P.B. Sci. Bull., Series C. 2014, vol. 76, iss. 3, pp. 1–8.
5. Radopoulou S. C., Brilakis I. Journal of Computing in Civil Engineering. 2017, vol. 31, no. 2, p. 04016057.
6. Christodoulou S. E., Hadjidemetriou G. M., Kyriakou C. Workshop of the European Group for Intelligent Computing in Engineering. Cham, Springer, 2018, pp. 125–138.
7. Moy de Vitry M., Schindler K., Rieckermann J., Leitão J. P. Remote Sensing. 2018, vol. 10, no. 5, p. 706.
8. Mikheeva T. I., Fedoseev A. A., Mikheev S. V., Golovnin O. K. Informatsionnye tekhnologii [Information technology]. 2017, vol. 23, no. 11, pp. 808–816. [In Russian]
9. Coenen T. B. J., Golroo A. Cogent Engineering. 2017, vol. 4, no. 1, p. 1374822.
10. Hadjidemetriou G. M., Vela P. A., Christodoulou S. E. Journal of Computing in Civil Engineering. 2018, vol. 32, no. 1, p. 04017073.
11. Abou Chacra D. B., Zelek J. S. 14th Conference on Computer and Robot Vision (CRV). IEEE, 2017, pp. 353–360.
12. Gkovedarou M., Brilakis I. International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving data-informed decision-making. ICE Publishing, 2019, pp. 43–47.
13. Huyan J., Li W., Tighe S., Deng R., Yan S. Journal of Computing in Civil Engineering. 2020, vol. 34, no. 1, p. 04019049.
14. Shi Y., Cui L., Qi Z., Meng F., Chen Z. IEEE Transactions on Intelligent Transportation Systems. 2016, vol. 17, no. 12, pp. 3434–3445.
15. Sidorov A. V., Golovnin O. K. IT & TRANSPORT. 2014, pp. 33–40.
16. Tsal' A. Yu., Ermoshin N. A., Sereda P. O. Inzhenernyy vestnik Dona [Don’s engineering bulletin]. 2018, no. 1 (48), pp. 16–22. [In Russian]
17. Bocharov D. S., Prokhorov S. A. Aktual'nye nauchnye issledovaniya v sovremennom mire [Actual scientific research in the modern world]. 2017, no. 5-5, pp. 29–34. [In Russian]
18. Hosseini M., Phalp K., Taylor J., Ali R. Crowdsourcing: Concepts, Methodologies, Tools, and Applications. IGI Global, 2019, pp. 33–52.
19. Huang Y., Chen M. International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS). IEEE, 2019, pp. 41–46.
20. Ivaschenko A. V., Ilyasova N. Y., Khorina A. A., Isayko V. A., Krupin D. N., Bolotsky V. A., Sitnikov P. V. CEUR Workshop Proceedings. 2018, vol. 2212, pp. 248–254.
21. Dai H. N., Wang H., Xu G., Wan J., Imran M. Enterprise Information Systems. 2019, pp. 1–25.
22. Kyriakou C., Christodoulou S. E., Dimitriou L. Journal of Infrastructure Systems. 2019, vol. 25, no. 3, p. 04019019.
23. Manan M. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, vol. 512, no. 1, p. 012017.
24. Prokhorov S. A., Stolbova A. A. Programmnye produkty i sistemy [Software products and systems]. 2017, vol. 30, no. 4, p. 668. [In Russian]
25. Stolbova A. A. Programmnye produkty i sistemy [Software products and systems]. 2017, vol. 30, no. 4, pp. 765–769. [In Russian]
26. Golovnin O. K., Stolbova A. A. Trudy SPIIRAN [Proceedings of St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences]. 2019, vol. 18, no. 2, pp. 326–353. [In Russian]
27. Christodoulou S. E., Kyriakou C., Hadjidemetriou G. Mobility Patterns, Big Data and Transport Analytics. Elsevier, 2019, pp. 365–380.
28. Fan R., Bocus M. J., Zhu Y., Jiao J., Wang L., Ma F., Liu M. IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 474–479.
29. Ht M., Danti A. International Conference on Data Science and Communication (IconDSC). IEEE, 2019, pp. 1–7.
30. Bank dorozhnykh dannykh [Road data bank]. Available at: http://gisabris.ru. [In Russian]

 

Дата создания: 17.02.2021 12:10
Дата обновления: 17.02.2021 13:21